Extremally Disconnected Topological Groups

Osvaldo A. Téllez Nieto (joint work with Michael Hrušák)

Instituto de Matemáticas UNAM, Unidad Morelia

February 2009

Contents

- Extremally disconnected topological spaces
- 2 Extremally disconnected topological groups
- **3** Two topologies for $[\omega]^{<\omega}$
- 4 Louveau's Theorem
- Sowhere dense ultrafilters

Extremally disconnected topological spaces

Definition

A topological space (X, τ) is *extremally disconnected* (E.D.) iff for each open set A, \overline{A} is open.

Equivalently, a topological space X is E.D. iff for every pair of open sets A, B, if $A \cap B = \emptyset$, then $\overline{A} \cap \overline{B} = \emptyset$.

イロト イポト イヨト イヨト

Extremally disconnected topological spaces

Definition

A topological space (X, τ) is *extremally disconnected* (E.D.) iff for each open set A, \overline{A} is open.

Equivalently, a topological space X is E.D. iff for every pair of open sets A, B, if $A \cap B = \emptyset$, then $\overline{A} \cap \overline{B} = \emptyset$.

- 4 同 6 4 日 6 4 日 6

E.D Topological Groups

Question (Arkhangel'skii, 1968)

Is there a non-discrete extremally disconnected topological group?

A partial answer is: Consistently, yes. That is, CON(ZFC) implies CON(ZFC + There is a non-discrete E.D. topological group).

(4月) (4日) (4日)

E.D Topological Groups

Question (Arkhangel'skii, 1968)

Is there a non-discrete extremally disconnected topological group?

A partial answer is: Consistently, yes. That is, CON(ZFC) implies CON(ZFC + There is a non-discrete E.D. topological group).

Extremally Disconnected Topology

Consider $[\omega]^{<\omega}$, the set of finite subsets of natural numbers. We define two topologies on $[\omega]^{<\omega}$.

Definition

Let \mathcal{F} be a filter on ω . We define $\tau_{\mathcal{F}}$ as follows: for each $U \subseteq [\omega]^{<\omega}$, $U \in \tau_{\mathcal{F}}$ iff for all $X \in U$, $\{n \in \omega : X \cup \{n\} \in U\} \in \mathcal{F}.$

- 4 同 2 4 日 2 4 日 2

Extremally Disconnected Topology

Consider $[\omega]^{<\omega}$, the set of finite subsets of natural numbers. We define two topologies on $[\omega]^{<\omega}$.

Definition

Let \mathcal{F} be a filter on ω . We define $\tau_{\mathcal{F}}$ as follows: for each $U \subseteq [\omega]^{<\omega}$, $U \in \tau_{\mathcal{F}}$ iff for all $X \in U$, $\{n \in \omega : X \cup \{n\} \in U\} \in \mathcal{F}$.

(4月) (4日) (4日)

Extremally Disconnected Topology

Proposition

If \mathcal{F} is ultrafilter, then $\tau_{\mathcal{F}}$ is extremally disconnected.

伺 ト イヨト イヨト

Group topology

Now we define another topology $\tau^{\mathcal{F}}$ on $[\omega]^{<\omega}$.

Group topology

Now we define another topology
$$\tau^{\mathcal{F}}$$
 on $[\omega]^{<\omega}$.

Definition

Let \mathcal{F} be an ultrafilter on ω and $X \in [\omega]^{<\omega}$. The basic $\tau^{\mathcal{F}}$ -nhoods for X are the sets $A_X = \{X \triangle M : M \in [A]^{<\omega}\}$ where $A \in \mathcal{F}$ and \triangle denotes the symmetric difference of sets.

(4月) (4日) (4日)

Group topology

Proposition

$[\omega]^{<\omega}$ with the topology $\tau^{\mathcal{F}}$ is a topological group with \triangle as operation.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Selective ultrafilter

Definition

Let \mathcal{F} be an ultrafilter on ω . \mathcal{F} is a *selective* ultrafilter iff for every function $\varphi : [\omega]^2 \to \{0, 1\}$, there exists $A \in \mathcal{F}$ homogeneous, that is, $\varphi''([A]^2) = i$ for some $i \in \{0, 1\}$.

向下 イヨト イヨト

Louveau's Theorem

Theorem (Louveau, 1972)

The following statements are equivalent:

$${f 0}\,\,{\cal F}$$
 is a selective ultrafilter

$$2 \tau^{\mathcal{F}} = \tau_{\mathcal{F}}$$

3
$$([\omega]^{<\omega}, au_{\mathcal{F}})$$
 is a topological group.

Louveau's Theorem

The following statement is also equivalent to the previous statements:

• $\tau^{\mathcal{F}}$ is an extremally disconnected topology.

高 とう モン・ く ヨ と

Proof

(2) implies (4) immediatly. We only prove (4) implies (1). Suppose that $\tau^{\mathcal{F}}$ is an extremally disconnected topology and let $\varphi : [\omega]^2 \to \{0,1\}$ be a coloring. For each $n \in \omega$, let

$$A_0^n = \{m \in \omega : \varphi(\{n, m\}) = 0\}$$

and

$$A_1^n = \{m \in \omega : \varphi(\{n, m\}) = 1\}$$

(4月) (4日) (4日)

Proof

(2) implies (4) immediatly. We only prove (4) implies (1). Suppose that $\tau^{\mathcal{F}}$ is an extremally disconnected topology and let $\varphi : [\omega]^2 \to \{0, 1\}$ be a coloring. For each $n \in \omega$, let

$$A_0^n = \{m \in \omega : \varphi(\{n, m\}) = 0\}$$

and

$$A_1^n = \{m \in \omega : \varphi(\{n, m\}) = 1\}$$

(4月) (4日) (4日)

Proof

(2) implies (4) immediatly. We only prove (4) implies (1). Suppose that $\tau^{\mathcal{F}}$ is an extremally disconnected topology and let $\varphi : [\omega]^2 \to \{0, 1\}$ be a coloring. For each $n \in \omega$, let

$$A_0^n = \{m \in \omega : \varphi(\{n, m\}) = 0\}$$

and

$$A_1^n = \{m \in \omega : \varphi(\{n, m\}) = 1\}$$

- (目) - (日) - (日)

then, since
$$A_0^n \cup A_1^n \in \mathcal{F}$$
, for some (unique)
 $i \in \{0, 1\}, A_i^n \in \mathcal{F}$. (We can say that \mathcal{F} "prefers" i
for n).
Let
 $A_0 = \{n \in \omega : A_0^n \in \mathcal{F}\}$
 $A_1 = \{n \in \omega : A_1^n \in \mathcal{F}\}.$

(ロ) (四) (E) (E) (E)

then, since
$$A_0^n \cup A_1^n \in \mathcal{F}$$
, for some (unique)
 $i \in \{0, 1\}, A_i^n \in \mathcal{F}$. (We can say that \mathcal{F} "prefers" i
for n).
Let
 $A_0 = \{n \in \omega : A_0^n \in \mathcal{F}\}$
 $A_1 = \{n \in \omega : A_1^n \in \mathcal{F}\}.$

<ロ> (四) (四) (三) (三) (三)

Then, since $A_0 \cup A_1 = \omega \in \mathcal{F}$, for some $i \in \{0, 1\}$, $A_i \in \mathcal{F}$. For each $n \in A_i$, let $U_n = \{n\} \triangle [A_i^n]^{<\omega}$, and $U = \bigcup U_n$.

向下 イヨト イヨト

Then, since $A_0 \cup A_1 = \omega \in \mathcal{F}$, for some $i \in \{0, 1\}$, $A_i \in \mathcal{F}$. For each $n \in A_i$, let $U_n = \{n\} \triangle [A_i^n]^{<\omega}$, and

$$U = \bigcup_{n \in A_i} U_n.$$

Then:

- $U \in \tau^{\mathcal{F}}$ because U is an union of open sets in $\tau^{\mathcal{F}}$.
- 0 ∈ Ū because for every nhood V of 0, V ∩ U ≠ Ø
 Ū = U ∪ {0}.

- (目) - (日) - (日)

Then:

- $U \in \tau^{\mathcal{F}}$ because U is an union of open sets in $\tau^{\mathcal{F}}$.
- 0 ∈ Ū because for every nhood V of 0, V ∩ U ≠ Ø
 Ū = U ∪ {0}.

向下 イヨト イヨト

Then:

- $U \in \tau^{\mathcal{F}}$ because U is an union of open sets in $\tau^{\mathcal{F}}$.
- $0 \in \overline{U}$ because for every nhood V of 0, $V \cap U \neq \emptyset$

•
$$\overline{U} = U \cup \{0\}.$$

向下 イヨト イヨト

As $\tau^{\mathcal{F}}$ is extremally disconnected, \overline{U} is open (and $0 \in \overline{U}$) then there is a basic nhood of 0. That is, there is an $A \in \mathcal{F}$ such that $[A]^{<\omega} \subseteq U$. The set A is homegeneous because if $n, m \in A$, then $\{n, m\} \in [A]^{<\omega}$ and consequently $\{n, m\} \in U$, then $n \in A_i$ and $m \in A_i^n$ or $m \in A_i$ and $n \in A_i^m$. In both cases, $\varphi(\{n, m\}) = i$.

Nowhere dense ultrafilters

The extremally disconnected topological group of the example, satisfies the following property:

Fact

For every continuous function $f : [\omega]^{<\omega} \to 2^{\omega}$ (where $[\omega]^{<\omega}$ has the topology $\tau_{\mathcal{F}}$ with \mathcal{F} a selective ultrafilter) there exists an open set V such that f[V] is nwd in 2^{ω} .

マロト イヨト イヨト

Nowhere dense ultrafilters

The extremally disconnected topological group of the example, satisfies the following property:

Fact

For every continuous function $f : [\omega]^{<\omega} \to 2^{\omega}$ (where $[\omega]^{<\omega}$ has the topology $\tau_{\mathcal{F}}$ with \mathcal{F} a selective ultrafilter) there exists an open set V such that f[V] is nwd in 2^{ω} .

(4月) (4日) (4日)

We ask if this property holds for every extremally disconnected topological group

Question (Hrušák)

Is it true that for every separable extremally disconnected topological group X and for every countinuous function $f: X \to 2^{\omega}$ there exists an open set V, such that f[V] is nwd in 2^{ω} ?

We ask if this property holds for every extremally disconnected topological group

Question (Hrušák)

Is it true that for every separable extremally disconnected topological group X and for every countinuous function $f: X \to 2^{\omega}$ there exists an open set V, such that f[V] is nwd in 2^{ω} ?

Proposition

If X is extremally disconnected, then the following are equivalent:

- $\mathbb{P} = RO(X)$ doesn't add Cohen reals.
- For every continuous function f : X → 2^ω there exists an open set V such that f[V] is nwd in 2^ω.

Recall the following:

Theorem (Blaszczyk-Shelah)

There exists a σ -centered forcing \mathbb{P} such that above every element of \mathbb{P} there are two incompatible ones and \mathbb{P} does not add any Cohen real iff there exists a nwd ultrafilter on ω .

If the answer to the question of Hrušák is yes, from the Blaszczyk-Shelah's theorem and the previous proposition we would have the following:

Corollary ???

The existence of a separable non-discrete extremally disconnected topological group implies the existence of a nwd ultrafilter.

Thank you!

Osvaldo A. Téllez Nieto (joint work with Michael Hrušák) Extremally Disconnected Topological Groups

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ